skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de_Roode, Jacobus C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. ABSTRACT In this comprehensive exploration, we delve into the pivotal role of host plants in shaping the intricate interactions between herbivorous insects and their pathogens. Recent decades have seen a surge in studies that demonstrate that host plants are crucial drivers of the interactions between insects and pathogens, providing novel insights into the direct and indirect interactions that shape tri‐trophic interactions. These studies have built on a wide range of pathogens, from viruses to bacteria, and from protozoans to fungi. We summarise these studies, and discuss the mechanisms of plant‐mediated insect resistance to infection, ranging from the toxicity of plant chemicals to pathogens to enhancement of anti‐pathogen immune responses, and modulation of the insect's microbiome. Although we provide evidence for the roles of all these mechanisms, we also point out that the majority of existing studies are phenomenological, describing patterns without addressing the underlying mechanisms. To further our understanding of these tri‐trophic interactions, we therefore urge researchers to design their studies to enable them specifically to distinguish the mechanisms by which plants affect insect susceptibility to pathogens. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026